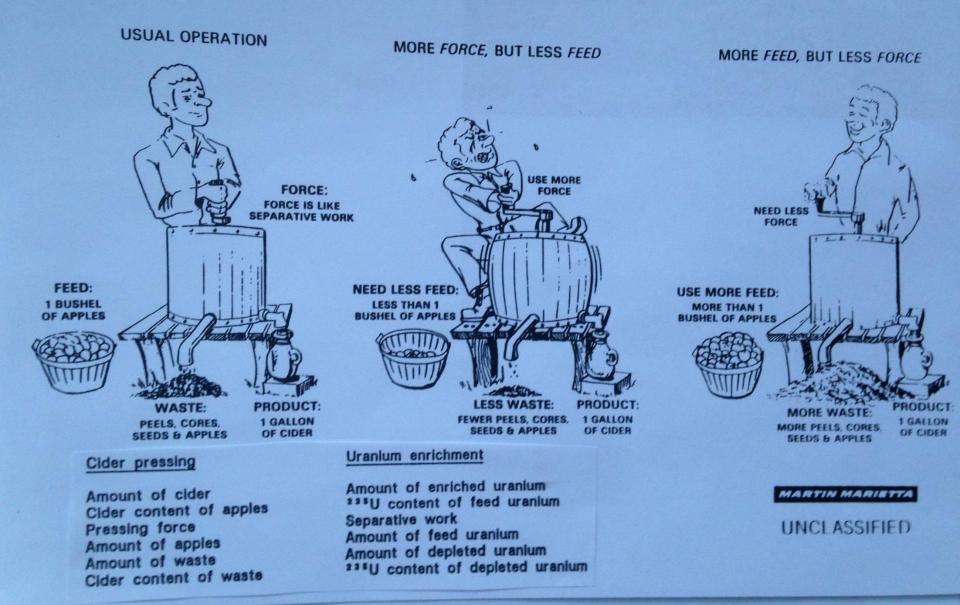
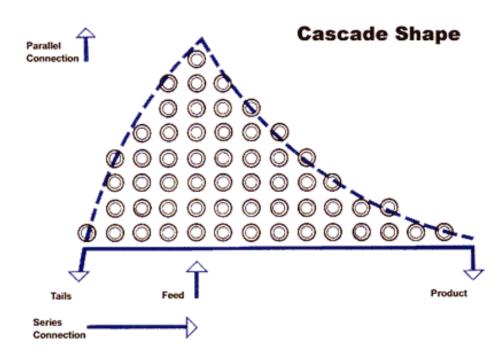

Separative Work: Introduction

ISIS Course October 30, 2014

Separative Work


- Separative work is a measure of the effort required in an enrichment facility to separate uranium of a given uranium 235 content into two fractions, one with a higher percentage of uranium 235 and one with a lower percentage. The common unit of measure is the kilogram uranium separative work unit, shortened to kg U swu and sometimes further shortened to swu or SWU. But be careful of units!
- Key terms include
 - feed and its percentage of uranium 235,
 - product and its percentage of uranium 235
 - waste or tails and its percentage of uranium 235


Separative Work & Tails Assay Analogy

Making One Gallon of Apple Cider

Cascades: A Network of Connected Separators

- The gaseous diffusion and gas centrifuge enrichment processes require that separator elements be combined in order to produce large quantities of enriched uranium.
- A cascade is the network of separators connected by piping.
- Stages are comprised of separators in parallel--to increase product enrichment, add stages
- Add more separators into a stage (in parallel) to increase the quantity of product.

Some Rules of Thumb,

where the waste or tails assay is 0.25 percent uranium 235 and the cascades are ideal

- It takes almost 5 swu to produce 1 kg of 3.5 percent enriched uranium from about 7 kg of natural uranium (with a tails assay of 0.25 percent uranium 235).
- It takes roughly 100,000 swu to fuel a 1,000 MWe light water reactor for one year of operation (with a tails assay of 0.25 percent uranium 235).
- It takes roughly 200 swu to produce about 1 kg of weapon-grade uranium (90% uranium 235) from roughly 200 kg of natural uranium (with a tails assay of 0.25 percent uranium 235).
- It takes roughly 5,000 swu to produce 25 kg of weapon-grade uranium, enough for a bomb, from roughly 5,000 kg of natural uranium (with a tails assay of 0.25 percent uranium 235).

Rules of Thumb: Enriched Uranium Feed

- It takes about 1,350 swu to produce about 25 kg of weapon-grade uranium from about 800 kg of 3.5 percent enriched uranium, assuming a tails assay of 0.72 percent.
 - This is about one quarter of the swu needed to go from natural uranium to 90 percent.
- It takes about 260 swu to produce about 25 kg of weapon-grade uranium from about 130 kg of 20 percent enriched uranium, assuming a tails assay of 3.5 percent enriched uranium.
 - This is one twentieth of the amount of swu needed to go to 90 percent product from natural uranium feed and one-quarter of the swu to go from 3.5 percent feed to 90 percent product.

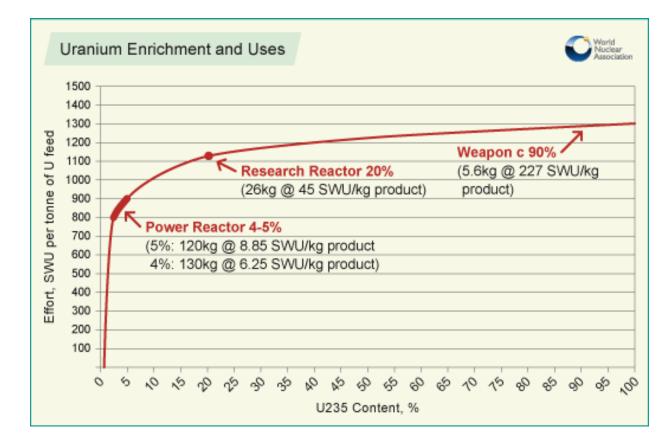
Caveat and Limitations of Rules

- Key to remember: these values represent an ideal condition that often does not occur in reality; actual values can vary, depending on the enrichment process and the design of the enrichment plant. In addition, in the proliferation context the tails assay is usually greater than 0.25%.
- For those following the issue in more detail, these masses are all the mass of uranium, not uranium hexafluoride mass or uranium oxide mass.
- Despite their drawbacks, these rules of thumb provide a quick and easy way to understand the inputs and outputs of major enrichment programs and their proliferation significance.

Calculations

- Given a plant producing 100,000 swu/year, how many bomb's worth of weapon-grade uranium could it make annually from natural uranium feed, where a bomb's worth is 25 kg of weapon-grade uranium (assume 0.25 percent tails assay)?
- In a plant that has an enrichment output of 10,000 swu/year, how many bomb's worth of weapon-grade uranium could it produce annually from natural uranium feed, where a bomb's worth is 25 kg of weapon-grade uranium? What if the feed is not natural uranium but 1) 3.5 percent or 2) 20 percent enriched uranium?

Answers


- Given a plant producing 100,000 swu/year, how many bomb's worth of weapon-grade uranium could it make annually from natural uranium feed, where a bomb's worth is 25 kg of weapon-grade uranium (assume 0.25 percent tails assay)?
 - 100,000 swu/y ÷ 5,000 swu per 25 kg of WGU = 20 bomb's worth

Answers (cont.)

- In a plant that has an enrichment output of 10,000 swu/year, how many bomb's worth of weapon-grade uranium could it produce annually from natural uranium feed, where a bomb's worth is 25 kg of weapon-grade uranium?
 - 10,000 swu/y ÷ 5,000 swu per 25 kg of WGU = 2 bomb's worth
- What if the feed is not natural uranium but 1) 3.5 percent
 - 10,000 swu/yr ÷ 1,350 swu per 25 kg of WGU = 7.4 bomb's worth
- or 2) 20 percent enriched uranium?
 - 10,000 swu/yr ÷ 260 swu per 25 kg of WGU = 38 bomb's worth

How one tonne of natural uranium feed might end up

The curve flattens because less enrichment effort is needed relative to what has already been expended to reach HEU.

Source: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Uranium-Enrichment/